
An Efficient Approach to Iterative Network Pruning
Chuan-Shun Huang1, Wuqian Tang1, Yung-Chih Chen2, Yi-Ting Li1, Shih-Chieh Chang1, and Chun-Yao Wang1

1National Tsing Hua University, Taiwan, ROC
2National Taiwan University of Science and Technology, Taiwan, R.O.C.

Abstract—Network pruning is a technique to minimize the number of
parameters of large neural networks. Network pruning can be performed
once or multiple times. One-shot network pruning is easy to reach the
required sparsity, but the corresponding accuracy drop may be unacceptable
with respect to different goals. On the other hand, iterative network pruning
trims and retrains the network iteratively to maintain the accuracy, but
suffering from the long runtime of this repetitive procedure. In this work,
we propose an efficient approach to network pruning by removing redundant
trainings. Experimental results show that our approach reduces 25% to
almost 60% of training time with comparable network accuracy as compared
to the state-of-the-art.

I. INTRODUCTION

The progression of cutting-edge technologies like Quantum Computing
[18], AI [3], [11], [29], and Approximate Computing [14], [16], [27]
signals a paradigm shift in our handling of complex computational
tasks. Deep Neural Networks (DNNs) related applications in AI have
become increasingly popular. However, the large size of DNN is still a
challenge for engineers when deploying DNNs on devices. A solution to
reducing the size of DNNs is network pruning [7]–[9], whose goal is to
eliminate components or weights from neural networks while preserving
the accuracy. To recover from the possible accuracy drop after pruning,
retraining plays an important role. Fine-tuning (FT) [8] is a conventional
method by retraining the pruned network with the minimum learning
rate used in the training schedule. Learning rate rewinding (LRW) [23]
adopts the training schedule of the original network based on the last few
epochs, and shows a better accuracy than fine-tuning. However, recent
research [15] shows that by using cyclical learning rate (CLR) [25], [26],
it outperforms previous techniques with a much better accuracy recovery.

Unfortunately, retraining techniques still suffer from a long runtime
when performing iterative pruning. This technique is capable of pre-
serving the accuracy, but performing the retraining process iteratively
is very time-consuming. One-shot pruning [8] is a faster method to
perform network pruning by setting the target sparsity and retraining
once. However, the accuracy loss might be a serious concern when setting
to a high sparsity.

[4] observed that pruning at most 20% weights from the network
per iteration balances efficiency with network accuracy. This method is
still used by recent research [15], [23] that seeks for better retraining
techniques. However, as better retraining techniques proposed, [4] can be
further improved since this method was not combined with those better
retraining techniques. By comparing the accuracy of pruned networks
retrained with FT [8] and CLR [26] separately, we found that the 20%
pruning ratio limit [4] is unnecessary when pruning at a low network
sparsity. We also observed that better retraining techniques can further
extend the pruning ratio in the first pruning iteration.

In this work, our pruning strategy focuses on unstructured pruning [8],
which is a network pruning technique that trims connections between
neurons only. To save time from the traditional iterative pruning, our
method reduces retraining time by extending the pruning ratio of the first
pruning iteration. Our experimental results show that network pruning
iterations of [4] at low sparsity can be combined into one step. After the
first iteration, we at most need two more iterations with small pruning
ratio to complete the process, where [4] usually needs 4 or 5 iterations
to reach high sparsity. Our method costs 25% to 60% time and is still
able to get comparable results as compared to [4].

II. PRELIMINARIES
A. Network Pruning

Network pruning can be classified into two categories – unstructured
pruning and structured pruning. Unstructured pruning [2], [8] removes the

This work is supported in part by the National Science and Technology Council
(Taiwan) under MOST 109-2221-E-007-082-MY2, MOST 111-2221-E-007-121,
MOST 111-2221-E-011-137-MY3, NSTC 112-2218-E-007-014, NSTC 112-2221-
E-007-106-MY2, NSTC 112-2221-E-007-108, NSTC 112-2425-H-007-002, and
NSTC 113-2425-H-007-004.

less important connections in the network, which is usually performed by
changing the weights to zero. Hence, it is also called weight pruning. The
result of unstructured pruning is a network with more sparse matrices. Al-
though the size of pruned network does not necessarily become smaller,
its computation can be accelerated by hardware that supports sparse
matrix computation. Structured pruning [17], [30], on the other hand,
removes less important neurons in the network. This is usually performed
by pruning weights in groups, such as components like channels, filters,
or layers. By removing the components, the pruned network has fewer
parameters than the original network. However, pruning neurons might
remove both important and unimportant connections at the same time,
which may lead to more accuracy loss [6].

B. Magnitude-Based Weight Pruning
Magnitude-based Weight Pruning (MWP) is an efficient unstructured

pruning algorithm proposed by [8]. MWP compares the absolute val-
ues of the weights, and considers the smaller value as “carrying less
information”. Weights with smaller magnitudes would be removed, or
change into zero. MWP removes these weights in an ascending order in
the network. In this work, we globally consider the absolute values of
all trainable weights across the whole network. However, for ResNets or
networks with a single fully-connected layer, we perform MWP only on
convolution layers.

C. Retraining Techniques
After pruning a network, its accuracy may decrease due to parameter

modification. To change the weights that fits the pruned network, there
are several techniques used to retrain the networks for regaining accuracy.

1. Fine-Tuning: Fine-tuning (FT) [8] is a retraining method that sets a
small constant learning rate to retrain the pruned network. The learning
rate that FT uses is based on the learning rate schedule for training
the initial network. To train an initial network, a conventional method
is to train with a multi-step learning rate schedule. These schedules
usually start with a large learning rate α, e.g., 0.1, and use it to train the
initial network for several epochs. Then, a smaller learning rate would be
applied, usually one-tenth of the previous one, for few more epochs. At
last, the smallest learning rate is used to train the network. An example
of this kind of learning rate schedule is listed in TABLE III for training
ResNets [10]. To fine-tune ResNet, we set α = 0.001, as our constant
FT learning rate.

2. Cyclical Learning Rate: Cyclical Learning Rate (CLR) [25], [26] is
a learning rate schedule that converges networks rapidly. CLR’s schedule
can be divided into two parts: rising and falling. The rising part starts with
a small learning rate and increases to a prespecified learning rate in few
epochs. This process is also known as warm up. The falling part starts
from the prespecified learning rate, and decreases with a cosine function
through several epochs. The rising and falling parts can be performed
alternately for many cycles. However, [15] uses 1-cycle CLR to retrain
pruned networks. [15] observed that 1-cycle CLR converges the network
faster and gets a better accuracy than FT.

D. One-Shot Pruning and Iterative Pruning
A standard network pruning process starts with a well-trained original

neural network. Next, it applies a pruning algorithm, e.g., MWP, on this
network to reach a target sparsity. Finally, it retrains the pruned network
with a retraining technique for several epochs to regain the accuracy loss.

For one-shot pruning [8], [17], network pruning and retraining are both
conducted once. That is, pruning the network to the required sparsity in
one move, then retrain the model only once. The advantage of one-
shot pruning is time saving. However, when we aim for a high network
sparsity, the accuracy is usually unrecoverable due to the massive changes
of network parameters. The sparsity that the one-shot pruning is able to

979-8-3503-6034-9/24/$31.00 ©2024 IEEE 2024 VLSI TSA

20
24

 In
te

rn
at

io
na

l V
LS

I S
ym

po
siu

m
 o

n
Te

ch
no

lo
gy

, S
ys

te
m

s a
nd

 A
pp

lic
at

io
ns

 (V
LS

I T
SA

) |
 9

79
-8

-3
50

3-
60

34
-9

/2
4/

$3
1.

00
 ©

20
24

 IE
EE

 |
 D

O
I:

10
.1

10
9/

VL
SI

TS
A6

06
81

.2
02

4.
10

54
64

42

Authorized licensed use limited to: National Tsing Hua Univ.. Downloaded on July 20,2024 at 02:23:20 UTC from IEEE Xplore. Restrictions apply.

Fig. 1: One-shot and iterative pruning results of ResNet-56 on CIFAR-10
using MWP [8] and retrained by FT/CLR for 20 epochs, respectively.
The retraining is applied after each iteration in the iterative pruning.

remain acceptable accuracy depends on the network structure, pruning
algorithm, and retraining techniques. For instance, a pruned network
can reach a higher sparsity with one-shot pruning when it is retrained
with CLR rather than with FT. However, even with a decent pruning
or retraining technique, one-shot pruning would fail and cause serious
accuracy loss when targeting at a certain high level of sparsity.

Iterative pruning [8], [17] repeats the process of pruning and retraining
for multiple times until the network reaches the target sparsity. By
removing a smaller percentage of weights one time, it is easier to retrain
the pruned network and regain accuracy. With the iterative pruning, it
is much easier to remain network accuracy at a high sparsity, but the
process is very time-consuming.

III. THE PROPOSED APPROACH

The idea of iterative pruning is to prune a portion of parameters, retrain
the pruned network to regain accuracy such that it is able to withstand
accuracy loss in the next iteration. [4] prunes 20% of weights in the
network per iteration until reaching a required sparsity, and this method
was also adopted in several studies [15], [19], [23]. However, we found
that this process can be accelerated by digging into the potential of the
1-cycle CLR [15], [26].

A. High Pruning Ratio for the First Iteration
When pruning at a low sparsity, the accuracies after retraining are

similar for both one-shot and iterative pruning, e.g., for ResNet-56 [10]
on CIFAR-10 [13] as shown in Fig 1. The accuracy is almost the same for
one-shot and iterative pruning under 40% sparsity. If we aim for a 40%
sparsity network, using one-shot pruning costs only half time of iterative
pruning while having a good outcome. This phenomenon inspires us to
use a larger prune ratio at the first iteration of iterative pruning.

To verify if using a larger pruning ratio for the first iteration is possible,
we set our target sparsity as 80%, where the work [4] would take 4
iterations of pruning and retraining. We increase the prune ratio to 40%
in the first iteration, and the result is shown in TABLE I. Pruning 40%
weights in the first move has a similar network accuracy compared to
pruning 20% weights evenly in all iterations, but only requires 75%
training epochs.

According to Fig 1, we can also notice one-shot pruning with CLR
outperforms both methods that retrains with FT, and the ability of CLR to
recover the accuracy at high network sparsity is remarkable. By applying
more retraining efforts for high sparsity network pruning, we can further
elevate the prune ratio at the first iteration and still able to remain
comparable performance. As shown in TABLE I, if we apply 10 more
epochs for retraining at each iteration, we can set a 60% pruning ratio
in the first iteration and requires 75% training epochs.

Previous experimental results lead to our method: For a given target
network sparsity n%, we set our first iteration pruning ratio m%. We
finish the network pruning process in the next iteration, where we prune
the retrained network once more to reach n% sparsity. Thus, we can
complete iterative pruning in 2 iterations.

We set the value of m as a smaller number than n, where 5 ≤ n –
m ≤ 10. We do not want n – m, or the pruning ratio increased for the
second iteration pruning to be too large; otherwise, it might lead to an
unrecoverable accuracy drop when pruning to a high target sparsity. In
our experiment, we set the value of m as the largest multiples of ten or
five that satisfies the mentioned formula.

B. Take an Extra Step Back to a Resilient Point
Over-parameterized neural networks are often easier to retrain than

networks with fewer parameters [21] after pruning. These large networks
also have more tolerance when pruning a large portion of weights in
the first iteration. When aiming for a high sparsity with our method,
the pruning ratio m% in the first iteration can be set as 80% for
large networks like VGG-nets [24]. However, networks with much fewer
parameters like ResNet-56 on CIFAR-10, as shown in Fig 1, 80% sparsity
is about the limit for CLR to recover the accuracy. By using more
retraining time, we can regain accuracy to the original one at 80%
sparsity, but not able to push the accuracy even higher to endure further
network pruning.

When handling these small models, we provide one extra step back: If
the first pruning ratio m% cannot get a decent accuracy after retraining
with CLR, we set a pruning ratio k%, which replaces m% as the first
iteration pruning ratio. The k% stands for a resilient point, where it
becomes much more difficult to regain network accuracy if we set a
sparsity number larger than k to perform the first pruning move.

Our method then becomes a 3-iteration network pruning: pruning to
k% sparsity, or the resilient point first, m% sparsity afterwards, and
finally to the target sparsity n%. For larger models, the value of k is
usually the same as m, which is still considered as a 2-iteration network
pruning.

From the experimental results of [4], setting the pruning ratio per
iteration smaller preserves the accuracy better. However, if the pruning
ratio chosen is too small, the whole iterative pruning process then
becomes extremely time consuming. Thus, we search the k value by
subtracting 10 from m repeatedly to lower our search time. In our
experiment, we can usually find the resilient point in the first search,
and we at most searched two times for the ResNet-110 on CIFAR-10
case.

Similar concepts have also been mentioned in [17] when pruning
filters across different layers. [17] shows that layers that are insensitive
to network pruning can be pruned by one-shot and still able to regain
accuracy easily. However, sensitive layers should be pruned iteratively;
otherwise the accuracy drop would be unrecoverable. Applying this
concept to our situation, a network remains resilient to network pruning
before it reaches the resilient point, or k% sparsity, where we are able
to retrain smoothly; but pruning more weights will cause the accuracy
drop visibly. Hence, we need to take smaller pruning steps afterwards,
like pruning with a small portion to m% and n%.

As shown in the row 2 of TABLE II, we set m = 80%, n = 90%, but
not able to recover the accuracy drop completely since pruning 80% in
the first move is too much for CLR to retrain well. We set k = 70%,
however, and perform a 3-iteration network pruning: 70%, 80%, and
90%, we are able to reduce 25% of retraining time and get a comparable
result to [4].

IV. EXPERIMENTAL RESULTS

All experiments were conducted on Windows 10, with Intel i5-13600
CPU, Nvidia RTX4090 GPU, and 64GB RAM. We use the following
networks in our experiments: ResNet-56 [10], ResNet-110 [10] , VGG-16
[24], and R(2+1)D-18 [28]. The training configurations of these networks
are listed in TABLE III. All experiments are run for three times, and the
accuracy is reported as “mean±std”.

A. ResNets on CIFAR-10
For ResNets [10], we choose ResNet-56 and ResNet-110, and use

CIFAR-10 as our dataset. We used the train code of [12], and adopted
the hyperparameters from [15] to train our initial network. We use global
MWP [8] to prune all convolution layers, and the small fully-connected
layer at the end of the network remains unpruned [19]. We set our target
sparsity as 90%, which is difficult for CLR to recover the accuracy with
one-shot pruning, that means iterative pruning is the only option here.

To retrain the network, we use the 1-cycle CLR [15], [26]. We take
3 warmup epochs to reach the largest learning rate used in the original
training schedule. For the rest of the retraining epochs, we use cosine
function to decrease the learning rate.

As the results shown in TABLE IV, we provide the 3-iteration pruning
for both ResNet-56 and ResNet-110 due to their small network sizes,
which made both networks very sensitive at a high sparsity. For ResNet-
56, we set our resilient point at 70% sparsity; for ResNet-110, we set
60% sparsity as a better resilient point.

Our results for ResNet-56 is comparable to [4]; but the results of
ResNet-110 is better than [4]. Since networks with fewer parameters are
harder to retrain, the reduction of time is only 25% as compared to [4].

Authorized licensed use limited to: National Tsing Hua Univ.. Downloaded on July 20,2024 at 02:23:20 UTC from IEEE Xplore. Restrictions apply.

TABLE I: Results of iterative pruning for ResNet-56 on CIFAR-10 with different prune rates for the first iteration.

Network Acc Ori.(%) Pruning Schedule(%) Accuracy(%) Epochs/Iter Total Epochs Epochs↓(%)
20, 40, 60, 80 93.46 ± 0.13 20 80 0

ResNet-56 93.22 40, 60, 80 93.47 ± 0.15 20 60 25
60, 80 93.68 ± 0.17 30 60 25

TABLE II: Results of iterative pruning for ResNet-56 on CIFAR-10 when aiming for 90% sparsity.

Network Acc Ori.(%) Pruning Schedule(%) Accuracy(%) Epochs/Iter Total Epochs Epochs↓(%)
20, 40, 60, 80, 90 93.31 ± 0.09 40 200 0

ResNet-56 93.22 80, 90 93.21 ± 0.03 80 160 20
70, 80, 90 93.30 ± 0.18 50 150 25

TABLE III: Training configurations for the unpruned networks in the experiments.

Dataset Network |Param| Optimizer Learning Rate (t = training epoch)

Nesterov SGD

α =

0.1 t ∈ [0, 80)
0.01 t ∈ [80, 120)
0.001 t ∈ [120, 160]

CIFAR-10 ResNet-56 0.85M β = 0.9
Batch size: 64

CIFAR-100 ResNet-110 1.72M Weight decay: 0.0001
Epochs: 160

Nesterov SGD

α =

0.05 · 1
2

⌊ t
30

⌋ t ∈ [0, 300]

β = 0.9
CIFAR-10 VGG-16 15.2M Batch size: 128

Weight decay: 0.0005
Epochs: 300

Adam

α =

 0.001
2

· (1 + cos(t mod 10
9

)π) t ∈ [0, 50]
β1 = 0.9

EgoGesture R(2+1)D-18 31.3M β2 = 0.999
Batch size: 16

Epochs: 50

TABLE IV: Results of iterative pruning with [4] comparing to our method when setting a high sparsity for ResNet-56, ResNet-110, VGG-16 on
CIFAR-10. We prune all the networks with MWP [8] globally, and retrained with CLR after each pruning iteration.

Network Acc Ori.(%) Param↓(%) Method Accuracy(%) Epochs/Iter Total Epochs CPU(s) Time↓(%)

ResNet-56 93.22 90
[4] 93.31 ± 0.09 40 200 4046 0

Ours 93.30 ± 0.18 50 150 3030 25.11

ResNet-110 93.50 90
[4] 93.57 ± 0.24 40 200 5561 0

Ours 93.66 ± 0.08 50 150 4155 25.28

VGG-16 92.50 96
[4] 92.56 ± 0.12 40 200 3036 0

Ours 92.58 ± 0.20 40 80 1240 59.16

B. VGG-16 on CIFAR-10
For VGG-16 [24], we also set CIFAR-10 as the dataset, and adopt the

training configurations from [5] to train our initial network. We set the
initial learning rate as 0.05, and we divide it by 2 for every 30 epochs.
The training process lasts for 300 epochs.

Since VGG-16 has 3 large fully-connected layers, we apply global
MWP [8] to prune all layers. We set the target sparsity as 96% due to
its high tolerance to network pruning. 96% sparsity is also a target that
(one-shot MWP + CLR) cannot recover the network’s accuracy.

For retraining, we modified our initial learning rate to 0.01. It has a
better retraining performance compared to the initial learning rate 0.05
that we used in the initial network training schedule. 3 warmup epochs
and the cosine decay function for the rest of the retraining is the same
experimental settings as for ResNets.

As shown in TABLE IV, we provide the 2-iteration pruning for VGG-
16. We set our resilient point at 90%, and move on to 96% for the
next iteration. Compared to [4], which spends 5 iterations to reach 96%
sparsity, we only need 2 iterations and save 59% CPU time with a slightly
better accuracy.

C. ResNets on CIFAR-100
We conduct our experiments for ResNets on CIFAR-100[13], to

showcase a situation that is hard to preserve the network accuracy. We
use the same experimental settings as for ResNets on CIFAR-10.

As shown in TABLE V, we cannot achieve accuracy no drop with
either methods when aiming for a 90% network sparsity. However, the
results are very similar to the experiments for ResNets shown in TABLE

IV. We also get a comparable accuracy for ResNet-56, and a slightly
better accuracy for ResNet-110 when compared to [4], with about 75%
runtime.

D. R(2+1)D-18 on EgoGesture
We selected R(2+1)D-18 [28] for our experiment. We would like to

show the performance of the network pruning and retraining techniques
when applying on a very different dataset and network structure.

We adopted the pre-trained parameters of R(2+1)D-18 from [22] and
continued to train with our learning rate schedule and the selected
datasets. We select EgoGesture [1], [31] as our dataset. EgoGesture
contains 83 kinds of static or dynamic hand gesture video clips. We also
picked 10 classes of gestures to form an “EgoGesture-10cls” dataset, in
order to simulate a 10-classification dataset like CIFAR-10. To be more
specific, we picked hand gestures that are labeled as number 1, 2, 3, 4,
5, 6, 12, 13, 14, and 15, which are all dynamic hand gestures.

We set CosineAnnealingWarmRestarts [20] as our learning rate sched-
uler, where it decreases the learning rate from 0.01 to 0 in 10 epochs,
and restarts at the initial learning rate again. We use 50 epochs to train
the network on the both EgoGesture-10cls and full EgoGesture dataset.

Similar to ResNets, we also exclude R(2+1)D-18’s fully-connected
layer when performing global MWP [8]. When retraining, we do not
apply any warmups since it has a rather small initial learning rate.

The experimental results for R(2+1)D-18 on EgoGesture-10cls dataset
are shown in TABLE VI. We set our resilient point at 80% and perform
2-iteration pruning. We are managed to use almost 40% time to achieve
accuracy no drop while [4] failed to do so.

Authorized licensed use limited to: National Tsing Hua Univ.. Downloaded on July 20,2024 at 02:23:20 UTC from IEEE Xplore. Restrictions apply.

TABLE V: We apply the same experimental settings in TABLE IV for ResNet-56 and ResNet-110 on CIFAR-100.

Network Acc Ori.(%) Param↓(%) Method Accuracy(%) Epochs/Iter Total Epochs Epochs↓(%)

ResNet-56 69.66 90
[4] 66.65 ± 0.08 40 200 0

Ours 66.64 ± 0.16 50 150 25

ResNet-110 71.49 90
[4] 68.73 ± 0.31 40 200 0

Ours 68.79 ± 0.12 50 150 25

TABLE VI: Results of iterative pruning with [4] comparing to our method when setting 90% sparsity for R(2+1)D-18 on EgoGesture-10cls and full
EgoGesture (83cls) dataset.

Dataset Acc Ori.(%) Param↓(%) Method Accuracy(%) Epochs/Iter Total Epochs CPU(s) Time↓(%)

EgoGesture-10cls 96.85 90
[4] 96.68 ± 0.72 20 100 4518 0

Ours 96.85 ± 0.33 20 40 1809 59.96

EgoGesture-83cls 91.76 90
[4] 89.41 ± 0.45 20 100 50202 0

Ours 89.49 ± 0.45 30 60 30753 38.74

The experimental results for R(2+1)D-18 on EgoGesture full dataset
are also shown in TABLE VI. We observed the same phenomenon as
shown in the CIFAR-100 experiment - accuracy is hard to preserve for
datasets that contain more classes. By adding 10 extra retraining epochs
for each iteration, we get a slightly better result than [4] with almost
61% runtime.

V. CONCLUSION

In this work, we propose an efficient approach to network pruning with
comparable network accuracy. We use a large network pruning portion
in the first pruning iteration to lower the runtime of iterative pruning
process. Furthermore, our results on accuracy are able to match the state-
of-the-art iterative pruning method on various network structures and
datasets with less runtime.

REFERENCES

[1] C. Cao, Y. Zhang, Y. Wu, H. Lu, and J. Cheng, “Egocentric gesture
recognition using recurrent 3d convolutional neural networks with spa-
tiotemporal transformer modules,” in Proc. of the IEEE International
Conference on Computer Vision, 2017, pp. 3763–3771.

[2] M. A. Carreira-Perpinán and Y. Idelbayev, ““Learning-compression”
algorithms for neural net pruning,” in Proc. of the IEEE Conference
on Computer Vision and Pattern Recognition, 2018, pp. 8532–8541.

[3] Y.-C. Chang, C.-C. Lin, Y.-T. Lin, Y.-C. Chen, and C.-Y. Wang, “A
convolutional result sharing approach for binarized neural network
inference,” in Proc. of the IEEE Design, Automation & Test in Europe
Conference & Exhibition, 2020, pp. 780–785.

[4] J. Frankle and M. Carbin, “The lottery ticket hypothesis: Finding
sparse, trainable neural networks,” in Proc. of the International Con-
ference on Learning Representations, 2019.

[5] C.-Y. Fu, PyTorch-VGG-CIFAR10, https://github.com/chengyangfu/
pytorch-vgg-cifar10, Accessed: 2023-06-23.

[6] K. Ghodasara, “Overview of decision tree pruning in machine learn-
ing,” International Research Journal of Engineering and Technology,
vol. 8, no. 8, pp. 2073–2076, 2021.

[7] S. Han, H. Mao, and W. J. Dally, “Deep compression: Compressing
deep neural network with pruning, trained quantization and huffman
coding,” in Proc. of the International Conference on Learning Repre-
sentations, 2016.

[8] S. Han, J. Pool, J. Tran, and W. Dally, “Learning both weights
and connections for efficient neural network,” Advances in Neural
Information Processing Systems, vol. 28, 2015.

[9] B. Hassibi and D. Stork, “Second order derivatives for network
pruning: Optimal brain surgeon,” Advances in Neural Information
Processing Systems, vol. 5, 1992.

[10] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for
image recognition,” in Proc. of the IEEE Conference on Computer
Vision and Pattern Recognition, 2016, pp. 770–778.

[11] Y.-C. Huang, Y.-H. Tsai, Y.-T. Li, Y.-C. Chen, and C.-Y. Wang,
“Accelerating binarized neural network inference by reusing operation
results and elevating resource utilization on edge devices,” in Proc. of
the IEEE International VLSI Symposium on Technology, Systems and
Applications, 2023, pp. 1–4.

[12] Y. Idelbayev, Proper ResNet implementation for CIFAR10/CIFAR100
in PyTorch, https : / / github . com / akamaster / pytorch resnet cifar10,
Accessed: 2023-05-14.

[13] A. Krizhevsky and G. Hinton, “Learning multiple layers of features
from tiny images,” University of Toronto, Tech. Rep., 2009.

[14] Y.-A. Lai, C.-C. Lin, C.-C. Wu, Y.-C. Chen, and C.-Y. Wang, “Efficient
synthesis of approximate threshold logic circuits with an error rate
guarantee,” in Proc. of the IEEE Design, Automation & Test in Europe
Conference & Exhibition, 2018, pp. 773–778.

[15] D. H. Le and B. Hua, “Network pruning that matters: A case study
on retraining variants,” in Proc. of the International Conference on
Learning Representations, 2021.

[16] C.-T. Lee, Y.-T. Li, Y.-C. Chen, and C.-Y. Wang, “Approximate logic
synthesis by genetic algorithm with an error rate guarantee,” in Proc.
of the IEEE Asia and South Pacific Design Automation Conference,
2023, pp. 146–151.

[17] H. Li, A. Kadav, I. Durdanovic, H. Samet, and H. P. Graf, “Pruning
filters for efficient convnets,” in Proc. of the International Conference
on Learning Representations, 2017.

[18] H.-L. Liu, Y.-T. Li, Y.-C. Chen, and C.-Y. Wang, “A robust approach
to detecting non-equivalent quantum circuits using specially designed
stimuli,” in Proc. of the IEEE Asia and South Pacific Design Automa-
tion Conference, 2023, pp. 696–701.

[19] Z. Liu, M. Sun, T. Zhou, G. Huang, and T. Darrell, “Rethinking the
value of network pruning,” in Proc. of the International Conference
on Learning Representations, 2019.

[20] I. Loshchilov and F. Hutter, “SGDR: stochastic gradient descent with
warm restarts,” in Proc. of the International Conference on Learning
Representations, 2017.

[21] B. Neyshabur, Z. Li, S. Bhojanapalli, Y. LeCun, and N. Srebro, “The
role of over-parametrization in generalization of neural networks,” in
Proc. of the International Conference on Learning Representations,
2019.

[22] A. Paszke, S. Gross, F. Massa, et al., “Pytorch: An imperative
style, high-performance deep learning library,” Advances in Neural
Information Processing Systems, vol. 32, 2019.

[23] A. Renda, J. Frankle, and M. Carbin, “Comparing rewinding and
fine-tuning in neural network pruning,” in Proc. of the International
Conference on Learning Representations, 2020.

[24] K. Simonyan and A. Zisserman, “Very deep convolutional networks
for large-scale image recognition,” in Proc. of the International
Conference on Learning Representations, 2015.

[25] L. N. Smith, “Cyclical learning rates for training neural networks,” in
IEEE Winter Conference on Applications of Computer Vision, 2017,
pp. 464–472.

[26] L. N. Smith and N. Topin, “Super-convergence: Very fast training
of neural networks using large learning rates,” in Proc. of Artificial
Intelligence and Machine Learning for Multi-Domain Operations
Applications, SPIE, vol. 11006, 2019, pp. 369–386.

[27] K. S. Tam, C.-C. Lin, Y.-C. Chen, and C.-Y. Wang, “An efficient
approximate node merging with an error rate guarantee,” in Proc. of
the IEEE Asia and South Pacific Design Automation Conference, 2021,
pp. 266–271.

[28] D. Tran, H. Wang, L. Torresani, J. Ray, Y. LeCun, and M. Paluri,
“A closer look at spatiotemporal convolutions for action recognition,”
in Proc. of the IEEE Conference on Computer Vision and Pattern
Recognition, 2018, pp. 6450–6459.

[29] Y.-H. Tsai, Y.-C. Huang, Y.-T. Li, Y.-C. Chen, and C.-Y. Wang,
“Minimizing computation in binarized neural network inference us-
ing partial-filter sharing,” in Proc. of the IEEE International VLSI
Symposium on Technology, Systems and Applications, 2023, pp. 1–4.

[30] R. Yu, A. Li, C.-F. Chen, et al., “Nisp: Pruning networks using neuron
importance score propagation,” in Proc. of the IEEE Conference on
Computer Vision and Pattern Recognition, 2018, pp. 9194–9203.

[31] Y. Zhang, C. Cao, J. Cheng, and H. Lu, “Egogesture: A new dataset
and benchmark for egocentric hand gesture recognition,” IEEE Trans-
actions on Multimedia, vol. 20, no. 5, pp. 1038–1050, 2018.

Authorized licensed use limited to: National Tsing Hua Univ.. Downloaded on July 20,2024 at 02:23:20 UTC from IEEE Xplore. Restrictions apply.

